Композитные материалы, что это такое?

Содержание

Композитные материалы, что это такое?

Композитные материалы — особенности свойств и основные виды

Что такое композиционный материал (композит)

Композитные материалы (КМ) – говорят, первые упоминания о подобных материалах можно найти в Библии. Композит — это материал, состоящий из двух и более компонентов, которые усиливают и дополняют свойства друг друга. Благодаря чему, конечный материал обладает свойствами, достижение которых невозможно каждым компонентом по отдельности. Возьмем, к примеру, стеклопластик. Так, если бы какая то деталь была полностью из стекла, она обладала бы очень большой теоретической прочностью на растяжение или сжатие. Но на практике, многочисленные поверхностные трещины приводят к разрушению изделия задолго до достижения ее теоретической прочности. В таком же изделии из стеклопластика, рост какой-то конкретной микротрещины ограничится обрывом одного волокна. А полимерная матрица перераспределит нагрузку на оставшиеся волокна. Примерно так работает самая обычная стеклопластиковая арматура. Так же, при изготовлении изделия можно заложить направление волокон с учетом предполагаемых направлений нагрузки на изделие. Что позволит избежать излишнего количества материалов в «ненужных» нам направлениях.

Рынок композитов в России

Доля России в мировом производстве композитов минимальна. Емкость рынка композиционных материалов, делает производство КМ одним из наиболее перспективных направлений деятельности в нашей стране. Если в 1970-е мы были 4-е в мире по производству композитов, то сейчас не обеспечиваем и 3% мирового спроса. Это в немалой степени обусловлено отсутствием своего сырья, до недавнего времени на долю импорта приходилось 90%. Но программа импорта замещения работает и в композитной отрасли, так в 2015г. на территории Татарстана было открытие завода по производству углеродного волокна. Предприятие, при выходе на полную мощность, способно полностью удовлетворить потребности российского рынка.

Так же, производство КМ в промышленном масштабе тормозит отсутствие единых технических регламентов в этой сфере. Главгосэкспертиза попросту не пропускает многие проекты в строительстве из-за отсутствия СНИПов на технологию. Тем не менее, с помощью КМ в России усилено больше тысячи строительных объектов. Так в 2014г . в Башкирии 5 мостов были усилены лентами (в основе которых углеродное волокно и эпоксидная смола) для провоза по ним крупногабаритного оборудования ОАО «Газпром» весом почти 100т.

Применение композитных материалов в технике

Полимерные КМ имеют неоспоримый ряд преимуществ в сравнении с металлоконструкциями. Таких как: эксплуатационно-технические, -экономические, технологические. Именно поэтому они (в основном углепластик и стеклопластик) получили широкое применение почти во всех отраслях промышленности.

Авиация

В самолетостроении композитные материалы начали применять еще с 1940-ых, в настоящее же время доля КМ в некоторых образцах достигает 50% (Boeing787 Dreamliner). Из КМ изготавливаются такие детали как: обшивка, руль высоты, руль направления, обтекатели, воздухозаборники, закрылки и т.п. К примеру: замена элементов крепления лопастей к ротору на стеклопластиковые, в некоторых моделях вертолетов, позволила снизить массу деталей на 40%, а стоимость в 2,5 раза.

Ракетная техника

Одними из первых стеклопластиковых деталей, примененных в 60-х годах, в ракетной технике, стали корпуса двигателей боевых ракет. Дальность таких ракет увеличилась с 1500 до 4000км. Сейчас, доля КМ в некоторых типах ракет доходит до 85-90% от общей массы.

Космические аппараты

Посчитано что экономическая выгода от снижения массы космического аппарата всего на 1кг составляет от10000 $ до 50 000 $. Наилучших показателей в снижении веса космических аппаратов удалось добиться только с применением КМ. К концу прошлого века доля композитов в конструкции составляла 20%.

Автомобилестроение

Применение композитов в машиностроении так же продолжает набирать обороты. Сейчас есть проекты создания автомобилей с максимальным применением КМ. Расход топлива такого автомобиля должен составить менее 2,5л на 100км.

Углепластик, стеклопластик, кевларопластик в основе которых эпоксидная и полиэфирная смола и многие другие виды КМ так же обширно применяются в судостроении, железнодорожном транспорте, спортивной технике, строительстве. В качестве только развивающихся видов техники можно выделить радиотехнику, военную технику, ортопедические протезы и современную бытовую технику.

Композитный материал-технологии изготовления

На конечные свойства изделия также влияет то, каким способом оно произведено. Некоторые методы позволяют организовать производство композитов даже у себя в гараже. И так, рассмотрим наиболее часто встречающиеся методы производства КМ:

Напыление

Рубленное волокно, перемешанное с катализированной смолой напыляется с помощью пистолета на оснастку.

Связующее : преимущественно, полиэфирная смола

Ручная формовка

Сухие армирующие волокна в виде полотен укладываются на матрицу, после чего наносится смола.

Вакуумное формование

После укладки и пропитки ткани как при ручной формовке, на стадии отверждения, применяется давление для укрепления ламината.

Связующее : чаще, эпоксидная смола или фенольная

Намотка

Волокна, пропитанные связующим, наматываются в различных направлениях на оправку. Пример: стеклопластиковые трубы или баллоны.

Пултрузия

Процесс производства профильных изделий из одноосно-ориентированных пластиков непрерывным способом, является аналогией экструзии металлов.

Сухой армирующий слой укладывается на оснастку, затем вторая часть оснастки закрывается и происходит инъекция смолы в полость.

Автоклав

Препрег (предварительно пропитанное волокно или ткань) выкладывается на поверхность оснастки. Затем оснастка нагревается под давлением до 120-180 °С. Давление создается автоклавом, а высокая температура активирует катализатор в связующем.

Связующее: обычно эпоксидная, полиэфирная или фенольная смола

Наполнитель: чаще всего углеродное или стекловолкно

В заключение

ХХI век давно называют веком композитных материалов, как были каменные и бронзовые века в древности. Композиты прочно вошли в нашу жизнь, изделия из углепластика и стеклопластика можно встретить во всех отраслях промышленности и в быту. Ясно, что у российского рынка композитов колоссальный потенциал. Производству ПКМ способствуют различные Государственные программы. Технология изготовления изделий из композиционных материалов вошла в число 27 приоритетных направлений, предусмотренных Указом №899 «Об утверждении приоритетных направлений развития науки, технологий и техники в РФ и перечня критических технологий РФ». Владение базовой теорией композитов может пригодиться и в быту от ремонта стеклопластиковой душевой кабины до упрочнения фундамента домов углеродной лентой. О перспективах компаний производящих композитные материалы не приходиться и говорить.

Композитные материалы: что это такое, свойства, производство и применение

В различных сферах промышленности используются композитные материалы. Что это такое? Это материалы на основе нескольких компонентов, что обусловливает их эксплуатационные и технологичные характеристики. В основе композитов лежит матрица на основе металла, полимера или керамики. Дополнительное армирование выполняется наполнителями в виде волокон, нитевидных кристаллов и различных частиц.

За композитами – будущее?

Пластичность, прочность, широкая сфера применения – вот чем отличаются современные композитные материалы. Что это такое с точки зрения производства? Эти материалы состоят из металлической или неметаллической основы. Для усиления материала используются нити, волокна, хлопья большей прочности. Среди композиционных материалов можно выделить пластик, который армируется борными, углеродными, стеклянными волокнами, или алюминий, армированный стальными или бериллиевыми нитями. Если комбинировать содержание компонентов, можно получать композиты разной прочности, упругости, стойкости к абразивам.

Основные типы

Классификация композитов основана на их матрице, которая может быть металлической и неметаллической. Материалы с металлической матрицей на основе алюминия, магния, никеля и их сплавов обретают дополнительную прочность за счет волокнистых материалов или тугоплавких частиц, которые не растворяются в основном металле.

Композиты с неметаллической матрицей в основе имеют полимеры, углерод или керамику. Среди полимерных матриц наиболее популярны эпоксидная, полиамидная и фенолформальдегидная. Форма композиции придается за счет матрицы, которая выступает своеобразным связующим веществом. Для упрочнения материалов используются волокна, жгуты, нити, многослойные ткани.

Изготовление композитных материалов ведется на основе следующих технологических методов:

  • пропитка армирующих волокон матричным материалом;
  • формование в пресс-форме лент упрочнителя и матрицы;
  • холодное прессование компонентов с дальнейшим спеканием;
  • электрохимическое нанесение покрытия на волокна и дальнейшее прессование;
  • осаждение матрицы плазменным напылением и последующее обжатие.

Какой упрочнитель?

Во многих сферах промышленности нашли применение композитные материалы. Что это такое, мы уже сказали. Это материалы на основе нескольких компонентов, которые обязательно упрочняются специальными волокнами или кристаллами. От прочности и упругости волокон зависит и прочность самих композитов. В зависимости от вида упрочнителя все композиты можно поделить:

  • на стекловолокниты;
  • карбоволокниты с углеродными волокнами;
  • бороволокниты;
  • органоволокниты.

Упрочнительные материалы могут укладываться в две, три, четыре и больше нити, чем их больше, тем прочнее и надежнее в эксплуатации будут композиционные материалы.

Древесные композиты

Отдельно стоит упомянуть древесный композит. Он получается посредством сочетания сырья разного типа, при этом в качестве основного компонента выступает древесина. Каждый древесно-полимерный композит состоит из трех элементов:

  • частиц измельченной древесины;
  • термопластичного полимера (ПВХ, полиэтилена, полипропилена);
  • комплекса химических добавок в виде модификаторов – их в составе материала до 5 %.

Самый популярный вид древесных композитов – это композитная доска. Ее уникальность в том, что она объединяет в себе свойства и древесины, и полимеров, что существенно расширяет сферу ее применения. Так, доска отличается плотностью (на ее показатель влияет базовая смола и плотность древесинных частичек), хорошим сопротивлением на изгиб. При этом материал экологичный, сохраняет текстуру, цвет и аромат натурального дерева. Использование композитных досок абсолютно безопасно. За счет полимерных добавок композитная доска обретает высокий уровень износостойкости и влагостойкости. Ее можно использовать для отделки террас, садовых дорожек, даже если на них приходится большая нагрузка.

Читать еще:  Дом с крышей до земли – забор в стиле шале

Особенности производства

Древесные композиты имеют особенную структуру за счет сочетания в них полимерной основы с древесиной. Среди материалов подобного типа можно отметить древесно-стружечные, древесноволокнистые плиты разной плотности, плиты из ориентированной щепы и древесно-полимерный композит. Производство композитных материалов данного типа ведется в несколько этапов:

  1. Измельчается древесина. Для этого используются дробилки. После дробления древесину просеивают и делят на фракции. Если влажность сырья — выше 15 %, его обязательно высушивают.
  2. Дозируются и смешиваются основные компоненты в определенных пропорциях.
  3. Готовое изделие прессуется и форматируется для обретения товарного вида.

Основные характеристики

Мы описали самые популярные полимерные композитные материалы. Что это такое, теперь понятно. Благодаря слоистой структуре есть возможность армирования каждого слоя параллельными непрерывными волокнами. Стоит отдельно сказать о характеристиках современных композитов, которые отличаются:

  • высоким значением временного сопротивления и предела выносливости;
  • высоким уровнем упругости;
  • прочностью, которая достигается армированием слоев;
  • за счет жестких армирующих волокон композиты обладают высокой стойкостью к напряжениям на разрыв.

Композиты на основе металлов отличаются высокой прочностью и жаропрочностью, при этом они практически неэластичны. За счет структуры волокон уменьшается скорость распространения трещин, которые иногда появляются в матрице.

Полимерные материалы

Полимерные композиты представлены в многообразии вариантов, что открывает большие возможности по их использованию в разных сферах, начиная от стоматологии и заканчивая производством авиационной техники. Наполнение композитов на основе полимеров выполняется разными веществами.

Наиболее перспективными сферами использования можно считать строительство, нефтегазовую промышленность, производство автомобильного и железнодорожного транспорта. Именно на долю этих производств приходится порядка 60 % объема использования полимерных композиционных материалов.

Благодаря высокой устойчивости полимерных композитов к коррозии, ровной и плотной поверхности изделий, которые получаются методом формования, повышается надежность и долговечность эксплуатации конечного продукта.

Рассмотрим популярные виды полимерных материалов.

Стеклопластики

Для армирования этих композиционных материалов используются стеклянные волокна, сформованные из расплавленного неорганического стекла. Матрица основывается на термоактивных синтетических смолах и термопластичных полимерах, которые отличают высокая прочность, низкая теплопроводность, высокие электроизоляционные свойства. Изначально они использовались при производстве антенных обтекателей в виде куполообразных конструкций. В современном мире стеклопластики широко применяются в строительной сфере, судостроении, производстве бытового инвентаря и спортивных предметов, радиоэлектронике.

В большинстве случаев стеклопластики производятся на основе напыления. Особенно эффективен этот метод при мелко- и среднесерийном производстве, например корпусов катеров, лодок, кабин для автомобильного транспорта, железнодорожных вагонов. Технология напыления удобна экономичностью, так как не требуется раскраиваться стекломатериал.

Углепластики

Свойства композитных материалов на основе полимеров дают возможность использовать их в самых разных сферах. В них в качестве наполнителя используются углеродные волокна, получаемые из синтетических и природных волокон на основе целлюлозы, пеков. Волокно обрабатывается термически в несколько этапов. По сравнению со стеклопластиками углепластики отличаются более низкой плотностью и более высоким модулем упругости при легкости и прочности материала. Благодаря уникальным эксплуатационным свойствам углепластики находят применение в машино- и ракетостроении, производстве космической и медицинской техники, велосипедов и спортивных принадлежностей.

Боропластики

Это многокомпонентные материалы, в основе которых лежат борные волокна, введенные в термореактивную полимерную матрицу. Сами волокна представлены мононитями, жгутами, которые оплетаются вспомогательной стеклянной нитью. Большая твердость нитей обеспечивает прочность и стойкость материала к агрессивным факторам, но при этом боропластики отличаются хрупкостью, что осложняет обработку. Борные волокна стоят дорого, поэтому сфера применения боропластиков ограничена в основном авиационной и космической промышленностью.

Органопластики

В этих композитах в качестве наполнителей выступают в основном синтетические волокна – жгуты, нити, ткани, бумага. Среди особенных свойств этих полимеров можно отметить низкую плотность, легкость по сравнению со стекло- и углепластиками, высокую прочность при растяжении и высокое сопротивление ударам и динамическим нагрузкам. Этот композиционный материал широко используется в таких сферах, как машино-, судо-, автостроение, при производстве космической техники, химическом машиностроении.

В чем эффективность?

Композитные материалы за счет уникального состава могут использоваться в самых разных сферах:

  • в авиации при производстве деталей самолетов и двигателей;
  • космической технике для производства силовых конструкций аппаратов, которые подвергаются нагреванию;
  • автомобилестроении для создания облегченных кузовов, рам, панелей, бамперов;
  • горной промышленности при производстве бурового инструмента;
  • гражданском строительстве для создания пролетов мостов, элементов сборных конструкций на высотных сооружениях.

Использование композитов позволяет увеличить мощность двигателей, энергетических установок, уменьшая при этом массу машин и оборудования.

Какие перспективы?

По мнению представителей сферы промышленности России, композиционный материал относится к материалам нового поколения. Планируется, что к 2020 году вырастут объемы внутреннего производства продукции композитной отрасли. Уже сейчас на территории страны реализуются пилотные проекты, направленные на разработку композитных материалов нового поколения.

Применение композитов целесообразно в самых разных сферах, но наиболее эффективно оно в отраслях, связанных с высокими технологиями. Например, сегодня ни один летательный аппарат не создается без использования композитов, а в некоторых из них используется порядка 60 % полимерных композитов.

Благодаря возможности совмещения различных армирующих элементов и матриц можно получить композицию с определенным набором характеристик. А это, в свою очередь, дает возможность применять эти материалы в самых разных сферах.

Композитный материал что это такое

Композиционный материал это:

Композицио́нный материа́л (компози́т, КМ )#160 — искусственно созданный неоднородный сплошной материал, состоящий из двух или более компонентов с четкой границей раздела между ними. В большинстве композитов (за исключением слоистых) компоненты можно разделить на матрицу и включенные в нее армирующие элементы. В композитах конструкционного назначения армирующие элементы обычно обеспечивают необходимые механические характеристики материала (прочность, жесткость и т.д.), а матрица (или связующее) обеспечивает совместную работу армирующих элементов и защиту их от механических повреждений и агрессивной химической среды.

Механическое поведение композиции определяется соотношением свойств армирующих элементов и матрицы, а также прочностью связи между ними. Эффективность и работоспособность материала зависят от правильного выбора исходных ком­понентов и технологии их совмещения, призванной обеспечить прочную связь между компонентами при сохранении их первоначальных характеристик.

В результате совмещения армирующих элементов и матрицы образуется комплекс свойств композиции, не только отражающий исходные характеристики его компонентов, но и включающий свойства, которыми изолированные компоненты не обладают. В частности, наличие границ раздела между армирующими элементами и матрицей существенно повышает трещиностойкость материала, и в композициях, в отличие от однородных металлов. повышение статической прочности приводит не к снижению, а, как правило, к повышению характеристик вязкости разрушения.

Для создания композиции используются самые разные армирующие наполнители и матрицы. Это#160 — гетинакс и текстолит (слоистые пластики из бумаги или ткани, склеенной термореактивным клеем), стекло- и графитопласт (ткань или намотанное волокно из стекла или графита, пропитанные эпоксидными клеями), фанера … Есть материалы, в которых тонкое волокно из высокопрочных сплавов залито алюминиевой массой. Булат #160 — один из древнейших композиционных материалов. В нем тончайшие слои (иногда нити) высокоуглеродистой стали «склеены» мягким низкоуглеродным железом.

В последнее время материаловеды экспериментируют с целью создать более удобные в производстве, а значит#160 — и более дешёвые материалы. Исследуются саморастущие кристаллические структуры, склеенные в единую массу полимерным клеем (цементы с добавками водорастворимых клеев), композиции из термопласта с короткими армирующими волоконцами и пр.

Содержание

Классификация композитов

Преимущества композиционных материалов

Главное преимущество КМ в том, что материал и конструкция создается одновременно. Исключением являются препреги. которые являются полуфабрикатом для изготовления конструкций. Стоит сразу оговорить, что КМ создаются под выполнение данных задач, соответственно не могут вмещать в себя все возможные преимущества, но, проектируя новый композит, инженер волен задать ему характеристики значительно превосходящие характеристики традиционных материалов при выполнении данной цели в данном механизме, но уступающие им в каких-либо других аспектах. Это значит, что КМ не может быть лучше традиционного материала во всём, то есть для каждого изделия инженер проводит все необходимые расчёты и только потом выбирает оптимум между материалами для производства.

Причём, разные классы композитов могут обладать одним или несколькими преимуществами. Некоторых преимуществ невозможно добиться одновременно.

Недостатки композиционных материалов

Композиционные материалы имеют достаточно большое количество недостатков, которые сдерживают их распространение.

Высокая стоимость

Высокая стоимость КМ обусловлена высокой наукоёмкостью производства, необходимостью применения специального дорогостоящего оборудования и сырья, а следовательно развитого промышленного производства и научной базы страны.

Анизотропия свойств

Анизотропия — непостоянство свойств КМ от образца к образцу. Для компенсации анизотропии увеличивают коэффициент запаса прочности, что может нивелировать преимущество КМ в удельной прочности. Таким примером может служить опыт применения КМ при изготовлении вертикального оперения истребителя МиГ-29. Из-за анизотропии применявшегося КМ вертикальное оперение было спроектировано с коэффициентом запаса прочности кратно превосходящим стандартный в авиации коэффициент 1,5, что в итоге привело к тому, что композитное вертикальное оперение Миг-29 оказалось равным по весу конструкции классического вертикального оперения, сделанного из дюралюминия .

Низкая ударная вязкость

Низкая ударная вязкость также является причиной повышения коэффициента запаса прочности. Кроме этого, низкая ударная вязкость обуславливает высокую повреждаемость изделий из КМ, высокую вероятность возникновения скрытых дефектов, которые могут быть выявлены только инструментальными методами контроля .

Высокий удельный объем

Высокий удельный объем является существенным недостатком при применении КМ в областях с жесткими ограничениями по занимаемому объему. Это относится, например, к сверхзвуковым самолётам. у которых даже незначительное увеличение объема самолёта приводит к существенному росту волнового аэродинамического сопротивления .

Гигроскопичность

Композиционные материалы гигроскопичны. т.е. склонны впитывать влагу, что обусловлено несплошностью внутренней структуры КМ. При длительной эксплуатации и многократном переходе температуры через 0 по Цельсию вода, проникающая в структуру КМ, разрушает изделие из КМ изнутри (эффект по природе аналогичен разрушению автомобильных дорог в межсезонье). Так одной из возможных причин авиакатастрофы American Airlines Flight 587. в которой от фюзеляжа оторвался композитный киль, названо разрушение структуры композитного киля от периодически замерзавшей в ней воды. Аналогичные примеры отделения композитного киля от фюзеляжа происходили также в России. [2]

КМ могут впитывать также другие жидкости, обладающие высокой проникающей способностью, например, авиационный керосин .

Токсичность

При эксплуатации КМ могут выделять пары, которые часто являются токсичными. Если из КМ изготавливают изделия, которые будут располагаться в непосредственной близости от человека (таким примером может послужить композитный фюзеляж самолета Boeing 787 Dreamliner ), то для одобрения применяемых при изготовлении КМ материалов требуются дополнительные исследования воздействия компонентов КМ на человека.

Читать еще:  Пенопласт и пенополистирол в чем разница, пулпан что такое

Низкая эксплуатационная технологичность

Композиционные материалы обладают низкой эксплуатационной технологичностью. низкой ремонтопригодностью и высокой стоимостью эксплуатации. Это связано с необходимостью применения специальных трудоемких методов, специальных инструментов для доработки и ремонта объектов из КМ. Часто объекты из КМ вообще не подлежат какой-либо доработке и ремонту.

Области применения

Товары широкого потребления

Что такое композитный материал

Сегодня композитными материалами пользуются в различных отраслях промышленности, начиная производство бытовых предметов, заканчивая космическими ракетами. Благодаря их плотности, прочности и другим техническим характеристикам появилась возможность их использования в местах с экстремальными условиями. Что представляет собой композитные материалы?

Композитами называют сплошные неоднородные материалы, которые искусственно создаются с использованием нескольких компонентов имеющих различные физические и химические свойства. Механические свойства композитных материалов определяются соотношение характеристик армирующих элементов и матрицы, прочностью их связи, обеспечиваемой правильным выбором исходных компонентов и способов с которыми они совмещаются.

Чаще всего к композитам относят материалы, основанные на смоле или полимерных матрицах. Для изготовления этих материалов пользуются фенольными, эпоксидными, винилэфирными, полиэфирными, а также полипропиленовыми полимерами. В качестве армирующих веществ для изготовления композитов пользуются сыпучими веществами и волокнами. Прочность материала определяется количеством смолы. Чем меньше ее количество, тем он будет прочнее. Сегодня чтобы получить идеальные пропорции всех компонентов происходит постоянное совершенствование технологий формирования композитного материала.

При формовании матрицу композитного материала объединяют с армирующим веществом, для изготовления того или иного изделия. Термореактивными полимерными матрицами в ходе формования испытывается химическая реакция отверждения. При формовании происходит расплавление термопластичных полимерных матриц и их застывание в форме, которая задана. Обычно данный процесс происходит при комнатной температуре и нормальном давлении.

Кроме того часто пользуются контактным (ручным) формованием, имеющим ряд серьезных минусов. В изделии, которое сформовано с помощью этого способа, содержится много смолы, что приводит к его хрупкости. Помимо этого, в данном случае сложно получить матрицу и армирующее с идеальными пропорциями, а также сохранить толщину изделия, без образования воздушных ходов внутри.

При вакуумном формовании используют открытую оснастку, в которой размещают композитные компоненты, которые накрывают, используя полимерную пленку или силиконовую мембрану. Далее на оснастку при атмосферном давлении и высокой температуре накладывается вакуум.

Статья была опубликована: 28-08-, 15:17

Что такое композиты?

Композиты — многокомпонентные материалы, состоящие из полимерной, металлической, углеродной, керамической или другой основы (матрицы), армированной наполнителями из волокон, нитевидных кристаллов, тонкодиспeрсных частиц и др. Путем подбора состава и свойств наполнителя и матрицы, их соотношения, ориентации наполнителя можно получить материалы с требуемым сочетанием эксплуатационных и технологических свойств. Использование в одном материале нескольких матриц (полиматричные композитные материалы) или наполнителей различной природы (гибридные композитные материалы) значительно расширяет возможности регулирования свойств композитных материалов. Армирующие наполнители воспринимают основную долю нагрузки композитных материалов.

По структуре наполнителя композитные материалы подразделяют на волокнистые (армированы волокнами и нитевидными кристаллами), слоистые (армированы пленками, пластинками, слоистыми наполнителями), дисперсноармированные, или дисперсноупрочненные (с наполнителем в виде тонкодисперсных частиц). Матрица в композитных материалах обеспечивает монолитность материала, передачу и распределение напряжения в наполнителе, определяет тепло-, влаго-, огне- и химическую стойкость.

По природе матричного материала различают полимерные, металлические, углеродные, керамические и другие композиты.

Наиболее широкое применение в технике получили композитные материалы, армированные высокопрочными и высокомодульными непрерывными волокнами. К ним относят:

— полимерные композитные материалы на основе термореактивных (эпоксидных, полиэфирных, винилэфирных, феноло-формальдегидных, полиимидных и др.) и термопластичных смол, армированных стеклянными (стеклокомпозиты), углеродными (углекомпозиты), органическими (органокомпозиты), борными (борокомпозиты) и другими видами волокон

— металлические композитные материалы на основе сплавов Al, Mg, Cu, Ti, Ni, Сг, армированных борными, углеродными или карбидкремниевыми волокнами, а также стальной, молибденовой или вольфрамовой проволокой

— композитные материалы на основе углерода, армированного углеродными волокнами (углерод-углеродные материалы)

— композитные материалы на основе керамики, армированной углеродными, карбидкремниевыми и другими жаростойкими волокнами.

При использовании углеродных, стеклянных, арамидных и борных волокон, содержащихся в материале в количестве 50-70%, созданы композиции с ударной прочностью и ударным модулем упругости в 2-5 раз большими, чем у обычных конструкционных материалов и сплавов. Кроме того, волокнистые композитные материалы превосходят металлы и сплавы по усталостной прочности, термостойкости, виброустойчивости, шумопоглощению, ударной вязкости и другим свойствам.

Что такое композиционные материалы?

В истории развития техники может быть выделено два важных направления :

  • развитие инструментов, конструкций, механизмов и машин,
  • развитие материалов.

Какое из них главнее сказать сложно, т.к. они довольно тесно взаимосвязаны, но без развития материалов технический прогресс невозможен в принципе. Не случайно, историки подразделяют ранние цивилизационные эпохи на каменный век, бронзовый век и век железный.

Нынешний 21 век уже можно отнести к веку композиционных материалов (композитов).

Понятие композиционных материалов сформировалось в середине прошлого, 20 века. Однако, композиты вовсе не новое явление, а только новый термин, сформулированный материаловедами для лучшего понимания генезиса современных конструкционных материалов.

Композиционные материалы известны на протяжении столетий. Например, в Вавилоне использовали тростник для армирования глины при постройке жилищ, а древние египтяне добавляли рубленную солому в глиняные кирпичи. В Древней Греции железными прутьями укрепляли мраморные колонны при постройке дворцов и храмов. В 1555-1560 при постройке храма Василия Блаженного в Москве русские зодчие Барма и Постник использовали армированные железными полосами каменные плиты. Прямыми предшественниками современных композиционнных материалов можно назвать железобетон и булатные стали.

Существуют природные аналоги композиционных материалов — древесина, кости, панцири и т.д. Многие виды природных минералов фактически представляют собой композиты. Они не только прочны, но обладают также превосходными декоративными свойствами.

Композиционные материалы — многокомпонентные материалы, состоящие из пластичной основы — матрицы, и наполнителей, играющих укрепляющую и некоторые другие роли. Между фазами (компонентами) композита имеется граница раздела фаз.

Сочетание разнородных веществ приводит к созданию нового материала, свойства которого существенно отличаются от свойств каждого из его составляющих. Т.е. признаком композиционного материала является заметное взаимное влияние составных элементов композита , т.е. их новое качество, эффект.

Варьируя состав матрицы и наполнителя, их соотношение, применяя специальные дополнительные реагенты и т.д., получают широкий спектр материалов с требуемым набором свойств.

Большое значение расположение элементов композитного материала, как в направлениях действующих нагрузок, так и по отношению друг к другу, т.е. упорядоченность. Высокопрочные композиты, как правило, имеют высокоупорядоченную структуру.

Простой пример. Горсть древесных опилок, брошенная в ведро цементного раствора никак не повлияет на его свойства. Если опилками заменить половину раствора — то существенно изменится плотность материала, его теплофизические константы, себестоимость производства и др. показатели. Но, горсть полипропиленовых волокон сделает бетон ударопрочным и износостойким, а полведра фибры обеспечат ему упругость, совсем не свойственную минеральным материалам.

В настоящее время в область композиционных материалов ( композитов ), принято включать разнообразные искусственные материалы, разрабатываемые и внедряемые в различных отраслях техники и промышленности, отвечающие общим принципам создания композитных материалов

Почему интерес к композиционным материалам проявляется именно сейчас ? Потому, что традиционные материалы уже не всегда или не вполне отвечают потребностям современной инженерной практики.

Матрицами в композиционных материалах являются металлы, полимеры, цементы и керамика. В качестве наполнителей используются самые разнообразные искусственные и природные вещества в различных формах ( крупноразмерные, листовые, волокнистые, дисперсные, мелкодисперсные, микродисперсные, наночастицы).

Известны также многокомпонентные композиционные материалы, в т.ч.:

  • полиматричные, когда в одном композиционном материале сочетают несколько матриц,
  • гибридные, включающие несколько разных наполнителей, каждый из которых имеет свою роль.

Наполнитель, как правило, определяет прочность, жесткость и деформируемость композита, а матрица обеспечивает его монолитность, передачу напряжений и стойкость к различным внешним воздействиям.

Особое место занимают декоративные композиционные материалы, имеющие выраженные декоративне свойства.

Разрабатываются композитные материалы со специальными свойствами, например радиопрозрачные материалы и радиопоглощающие материалы, материалы для тепловой защиты орбитальных космических аппаратов, материалы с малым коэффициентом линейного термического расширения и высоким удельным модулем упругости и другие.

Композиционные материалы используются во всех областях науки, техники, промышленности, в т.ч. в жилищном, промышленном и специальном строительство, общем и специальном машиностроении, металлургии, химической промышленности, энергетике, электронике, бытовой технике, производстве одежды и обуви, медицине, спорте, искусствах и т.д.

Структура композиционных материалов.

По механической структуре композиты делятся на несколько основных классов: волокнистые, слоистые, дисперсноупрочненные, упрочненные частицами и нанокомпозиты.

Волокнистые композиты армируются волокнами или нитевидными кристаллами. Даже небольшое содержание наполнителя в композитах такого типа приводит к существенному улучшению механических свойств материала. Широко варьировать свойства материала позволяет также изменение ориентации размера и концентрации волокон.

В слоистых композиционных материалах матрица и наполнитель расположены слоями, как, например, в триплексах, фанере, клееных деревянных конструкциях и слоистых пластиках.

Микроструктура остальных классов композиционных материалов характеризуется тем, что матрицу наполняют частицами армирующего вещества, а различаются они размерами частиц. В композитах, упрочненных частицами, их размер больше 1 мкм, а содержание составляет 20-25% (по объему), тогда как дисперсноупрочненные композиты включают в себя от 1 до 15% (по объему) частиц размером от 0,01 до 0,1 мкм. Размеры частиц, входящих в состав нанокомпозитов еще меньше и составляют 10-100 нм.

Некоторые распространеные композиты

Бетоны — самые распространенные композиционные материалы. В настоящее время производится большая номенклатура бетонов, отличающихся по составам и свойствам. Современные бетоны производятся как на традиционных цементных матрицах, так и на полимерных ( эпоксидных, полиэфирных, фенолоформальдегидных, акриловых и т.д.). Современные высокоэффективные бетоны по прочности приближаются к металлам. Популярными становятся декоративные бетоны.

Органопластики — композиты, в которых наполнителями служат органические синтетические, реже — природные и искусственные волокна в виде жгутов, нитей, тканей, бумаги и т.д. В термореактивных органопластиках матрицей служат, как правило, эпоксидные, полиэфирные и фенольные смолы, а также полиимиды. Органопластики обладают низкой плотностью, они легче стекло- и углепластиков, обладают относительно высокой прочностью при растяжении; высоким сопротивлением удару и динамическим нагрузкам, но, в то же время, низкой прочностью при сжатии и изгибе. К наиболее распространенным органопластикам относятся древесные композиционные материалы. По объемам производства органопластики превосходят стали, аллюминий и пластмассы.

Читать еще:  Как накрыть крышу шифером своими руками

В зарубежной литературе в последнее время становятся популярными новые термины — биополимеры, биопластики и соответственно — биокомпозиты.

Древесные композиционные материалы. К наиболее распространенным древесным композитам относятся арболиты, ксилолиты, цементностружечные плиты, клееные деревянные конструкции, фанеры и гнутоклееные детали, древесные пластики, древесностружечные и древесноволокнистые плиты и балки, древесные прессмассы и пресспорошки, термопластичные древесно-полимерные композиты.

Стеклопластики — полимерные композиционные материалы, армированные стеклянными волокнами, которые формуют из расплавленного неорганического стекла. В качестве матрицы чаще всего применяют как термореактивные синтетические смолы (фенольные, эпоксидные, полиэфирные и т.д.), так и термопластичные полимеры (полиамиды, полиэтилен, полистирол и т.д.). Стеклопластики обладают высокой прочностью, низкой теплопроводностью, высокими электроизоляционными свойствами, кроме того, они прозрачны для радиоволн. Слоистый материал, в котором в качестве наполнителя применяется ткань, плетенная из стеклянных волокон, называется стеклотекстолитом.

Углепластики — наполнителем в этих полимерных композитах служат углеродные волокна. Углеродные волокна получают из синтетических и природных волокон на основе целлюлозы, сополимеров акрилонитрила, нефтяных и каменноугольных пеков и т.д. Матрицами в угепластиках могут быть как термореактивные, так и термопластичные полимеры. Основными преимуществами углепластиков по сравнению со стеклопластиками является их низкая плотность и более высокий модуль упругости, углепластики — очень легкие и, в то же время, прочные материалы.

На основе углеродных волокон и углеродной матрицы создают композиционные углеграфитовые материалы — наиболее термостойкие композиционные материалы (углеуглепластики), способные долго выдерживать в инертных или восстановительных средах температуры до 3000° С.

Боропластики — композиционные материалы, содержащие в качестве наполнителя борные волокна, внедренные в термореактивную полимерную матрицу, при этом волокна могут быть как в виде мононитей, так и в виде жгутов, оплетенных вспомогательной стеклянной нитью или лент, в которых борные нити переплетены с другими нитями. Применение боропластиков ограничивается высокой стоимостью производства борных волокон, поэтому они используются главным образом в авиационной и космической технике в деталях, подвергающихся длительным нагрузкам в условиях агрессивной среды.

Пресспорошки ( прессмассы). Известно более 10000 марок наполненных полимеров. Наполнители используются как для снижения стоимости материала, так и для придания ему специальных свойств. Впервые наполненный полимер начал производить др. Бакеланд (Leo H. Baekeland, США), открывший в начале 20 в. способ синтеза фенолформфльдегидной (бакелитовой) смолы. Сама по себе эта смола — вещество хрупкое, обладающее невысокой прочностью. Бакеланд обнаружил, что добавка волокон, в частности, древесной муки к смоле до ее затвердевания, увеличивает ее прочность. Созданный им материал — бакелит — приобрел большую популярность. Технология его приготовления проста: смесь частично отвержденного полимера и наполнителя — пресс-порошок — под давлением необратимо затвердевает в форме. Первое серийное изделие произведено по данной технологии в 1916, это — ручка переключателя скоростей автомобиля «Роллс-Ройс». Наполненные термореактивные полимеры широко используются в самых разных областях техники. Для наполнения термореактивных и термопластичных полимеров применяются разнообразные наполнители — древесная мука, каолин, мел, тальк, слюда, сажа, стекловолокно, базальтовое волокно и др,

Текстолиты — слоистые пластики, армированные тканями из различных волокон. Технология получения текстолитов была разработана в 1920-х г.г. на основе фенолформальдегидной смолы. Полотна ткани пропитывают смолой, затем прессуют при повышенной температуре, получая текстолитовые пластины или фасонные изделия. Связующими в текстолитах является широкий круг термореактивных и термопластичных полимеров, а иногда и неорганические связующие на основе силикатов и фосфатов. В качестве наполнителя используются ткани из самых разнообразных волокон — хлопковых, синтетических, стеклянных, углеродных, асбестовых, базальтовых и т.д. Соответственно разнообразны свойства и применение текстолитов.

Композиционные материалы с металлической матрицей. При создании композитов на основе металлов в качестве матрицы применяют алюминий, магний, никель, медь и т.д. Наполнителем служат высокопрочные волокна, тугоплавкие частицы различной дисперсности, нитевидными монокристаллы оксида алюминия, оксида бериллия, карбидов бора и кремния, нитридов алюминия и кремния и т.д. длиной 0,3-15 мм и диаметром 1-30 мкм.

Основными преимуществами композиционных материалов с металлической матрицей по сравнению с обычным (неусиленным) металлом являются: повышенная прочность, повышенная жесткость, повышенное сопротивление износу, повышенное сопротивление ползучести.

Композиционные материалы на основе керамики. Армирование керамических материалов волокнами, а также металлическими и керамическими дисперсными частицами позволяет получать высокопрочные композиты, однако, ассортимент волокон, пригодных для армирования керамики, ограничен свойствами исходного материала. Часто используют металлические волокна. Сопротивление растяжению растет незначительно, но зато повышается сопротивление тепловым ударам — материал меньше растрескивается при нагревании, но возможны случаи, когда прочность материала падает. Это зависит от соотношения коэффициентов термического расширения матрицы и наполнителя.

Армирование керамики дисперсными металлическими частицами приводит к новым материалам (керметам) с повышенной стойкостью, устойчивостью относительно тепловых ударов, с повышенной теплопроводностью. Из высокотемпературных керметов делают детали для газовых турбин, арматуру электропечей, детали для ракетной и реактивной техники. Твердые износостойкие керметы используют для изготовления режущих инструментов и деталей. Кроме того, керметы применяют в специальных областях техники — это тепловыделяющие элементы атомных реакторов на основе оксида урана, фрикционные материалы для тормозных устройств и т.д.

Композиционные материалы: виды, применение в строительстве и основные преимущества

Строительная индустрия постоянно развивается, открываются новые площадки, строятся различные объекты.

Композиционные материалы стали неотъемлемой частью этой сферы, сейчас уже трудно представить масштабные строительные работы без использования композита.

Стойкий, легкий и прочный, он имеет значительные преимущества перед природными материалами, обладающими большим весом и не имеющими значительных способностей к изменению формы.

Композиционные материалы в строительстве

Существуют разные типы композиционных материалов, они различаются по своему составу и свойствам. Наиболее распространены и востребованы в строительстве, например, такие виды, как сэндвич-панели, углепластиковые панели, слоистые материалы, текстолиты, стеклопластики. Все они обладают высокими эксплуатационными характеристиками и декоративным эффектом.

Композит применяется не только при возведении жилых объектов. Трудно представить мост или плотину, где бы не использовались углепластиковые панели. Различные архитектурные элементы, такие как арки или купола, тоже зачастую создаются с применением композиционных материалов. Это выгодно для застройщиков, поскольку обеспечивает им значительную экономию на возведении конструкций, монтаже, хранении и перевозке материала, и при этом надежность, качество и прочие эксплуатационные характеристики будущего здания никак не страдают.

Дизайнеры используют композит в моделизме. Оригинальные расцветки, возможность создавать необычные причудливые формы — все это можно увидеть, если рассмотреть всевозможные композиционные материалы на www.hccomposite.com. С такими ресурсами можно создавать действительно необычные архитектурные сооружения, которые будут еще и надежными и долговечными.

Виды, характеристики и свойства

Все композиционные материалы изготавливаются по похожей структуре — у них есть армирующее вещество и матрица. Арматура — это то, что передает материалу физические и химические свойства, является его основой. А матрица придает изделию форму, фиксируя арматуру определенным образом.

Можно выделить некоторые примеры самых распространенных в строительстве композитов:

  • Бетоны. Их матрица может быть как традиционной, цементной, так и созданной на основе новых технологий — полимерной. Разновидностей бетонов существует огромное множество, они отличаются своими свойствами и областью применения — от обычных до декоративных. Современные бетоны по своей прочности приближаются к металлическим конструкциям.
  • Органопластические композиты. Их основным наполнителем являются синтетические волокна, изредка используются и природные материалы. Матрицей обычно служат различные смолы. Органопластики достаточно легкие, хорошо держат удар, сопротивляются динамическим нагрузкам, но при этом плохо выдерживают растяжения и сгибы. Древесные композиционные материалы также относятся к органопластикам по классификации.
  • Стеклопластики армируются стеклянными волокнами, а в качестве формирующей матрицы для их изготовления применяют особые синтетические смолы или термопластичные виды полимеров. Материал обладает устойчивостью, прочностью, низкой теплопроводностью, но при этом свободно пропускает радиосигналы.
  • Углепластики представляют собой соединение углеводородных волокон и различных полимеров. Обладают более высокой упругостью, чем стеклопластики, легкие и достаточно прочные.
  • Текстолиты — это слоистые материалы, армированные тканями на основе различных волокон. Заготовки-полотна заранее пропитывают смолой, а затем прессуют с использованием режима высокой температуры, получая готовый к применению пласт. Поскольку наполнители могут быть очень разными, то и свойства значительно разнятся.

Преимущества, недостатки и применение

Поскольку композиты являются достаточно эффективными, применение в строительстве достаточно распространено благодаря ряду преимуществ этих материалов.

  • Изделия получаются очень прочные, некоторые виды композиционных материалов, например, стеклопластики, по своей прочности способны соперничать с металлом. При этом они отличаются гибкостью и хорошо переносят различные воздействия.
  • Композиты отличаются своей легкостью, по сравнению с аналогами. Легкие балки, изготовленные из стекловолокна, гораздо лучше подходят для создания перекрытий в больших помещениях, чем металлические. Получившаяся конструкция не потеряет в прочности и качестве, но при этом требует гораздо меньших усилий во время проведения монтажных работ.
  • Материалы отличаются высокой устойчивостью к воздействию агрессивной среды, поэтому из них можно создавать не только внутренние конструкции, но и использовать для внешних, открытых воздействию солнечных лучей, осадков и резкой смене температур.
  • Химические реагенты не страшны композитным материалам, поэтому их можно использовать, например, для возведения складов, где будут храниться химикаты.
  • Благодаря новым технологиям, современные композиты перестали быть пожароопасными, они не позволяют пламени распространиться, практически не дымят и не выделяют опасных ядовитых веществ.

У композитов есть не только преимущества, но и недостатки, которые сдерживают их распространение на строительном рынке.

  • Высокая стоимость — основная проблема композиционных материалов. Для их изготовления необходимо специальное сырье и современное оборудование, поэтому и готовые изделия получаются достаточно дорогими.
  • Материалы обладают гигроскопичностью, то есть, легко впитывают влагу, что ведет к дальнейшему разрушению. Поэтому их необходимо дополнительно укреплять при производстве влагостойкими защитными средствами.
  • Некоторые композиционные материалы имеют низкую ремонтопригодность, что повышает стоимость их эксплуатации.

Композиционные материалы, как и любые другие, имеют свои достоинства и недостатки.

Насколько оправданным будет использование композитов? Зависит от конкретных целей, условий, общего бюджета. Впрочем, современные технологии позволяют изобретать новые формы и виды таких материалов, поэтому, возможно, в будущем они станут менее дорогими и более распространенными, а также обзаведутся улучшенными характеристиками.

My site
Добавить комментарий